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Abstract

The purpose of this work is to present a new-concept multi-resolution multi-scale topology optimization. The key
idea of the present strategy is that design optimization should be performed progressively from low to high
resolution, not at a single resolution level. To achieve the multi-resolution strategy, design optimization is

formulated in a wavelet-based variable space, not in a direct density variable space. The major advantages of the
multi-resolution design optimization include: (1) topologically simple and close-to-the-global-optimum structures
may be obtained without any explicit constraint, and (2) the convergence is not sensitive to mathematical

programming methods. For the e�cient numerical implementation of the multi-resolution approach, the side
constraints imposed on the direct density variables are removed by mapping the density variables into intermediate
variables. These intermediate variables are then wavelet-transformed to new design variables. It is addressed that the

present multi-resolution topology optimization can resolve major numerical instability problems such as mesh-
dependencies and local minima. The usefulness of the multi-scale nature of the wavelets in the present multi-
resolution multi-scale optimization formulation is also discussed. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Topology optimization has become an important design method and been applied to many practical
problems. Extensive references on topology optimization can be found in Bendsùe and Kikuchi (1988)
and Bendsùe (1995). Hassani and Hinton (1998a, 1998b, 1998c) also give a recent review on topology
optimization and related subjects. Sigmund and Petersson (1998) gave an excellent review on several
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available techniques dealing with numerical instability problems including checkerboards, mesh-
dependencies, and local minima. No attempt is made here to refer to all the previous publications on the
subject of topology optimization; see the papers cited above.

In order to develop an e�cient topology optimization method, a new attempt based on wavelets has
been recently coined by one of the present authors. Kim and Choi (1998) transformed direct density
variables into new variables using a wavelet transform.1 The idea was that topology optimization can be
carried out more e�ectively in the wavelet transformed space than in the direct density space since
wavelets can detect very e�ciently the edges and corners of an image. They applied the wavelet-based
method to section topology optimization problems formulated by Kim and Kim (2000) and reported
that the solution convergence rate can be substantially improved. More numerical results can be found
in Choi (1999). Kim and Kim (1999) have also indicated that the design optimization in the wavelet
space can control e�ectively checkerboard patterns, typical in the low-order ®nite element analysis.
Poulsen (1999) also discusses the possibility of using wavelets for attacking numerical instabilities such
as checkerboards. However, none of these works has suggested that wavelets may be useful for multi-
resolution topology optimization.

In this work, we formulate multi-resolution multi-scale topology optimization using wavelet
transforms. This approach di�ers from any other existing approach in that the latter has no notion of
resolution. The essence of the multi-resolution optimization is to start optimization at a low-resolution
level and move to the next higher-resolution level until the highest-resolution level is reached. In this
multi-resolution optimization strategy, the optimized structural topology at a certain resolution level can
be used as an initial guess for optimization at the next level. The progression from a coarse to a ®ne
resolution level is achieved in a using wavelet-transformed variable space, not in a direct density variable
space. The wavelet-based design variables are multi-scaled, ranging from the longest scale to the scale
proportional to a resolution level. The multi-scale nature of wavelets allows the systematic and e�cient
implementation of multi-resolution optimization.

The advantages of the multi-resolution design optimization in the wavelet spaces, which we have
found so far, are the followings. (1) Topologically simple structures, which are close to the global
optima, may be obtained when an appropriate wavelet is employed; (2) the solution convergence
appears insensitive to mathematical programming methods; (3) the rate of the solution convergence can
be greatly enhanced if optimization is carried out in the wavelet space. Obtaining topologically simple
and close-to-the-global-optimum structures is, in principle, equivalent to obtaining mesh- independent
optimized structures. There are several mesh-independent approaches (Harber et al., 1996; Sigmund and
Petersson, 1998; Sigmund, 1994, 1997), but these approaches use either explicit constraints or ®ltering
schemes. However, the present approach yields topologically simple and close-to-the-global-optimum
structures without any explicit constraint.

For the e�cient numerical implementation of the present multi-resolution optimization strategy, we
eliminate the side constraints imposed on the density variables by introducing intermediate variables. To
this end, we propose to use the Sigmoid function, an S-shaped function, as the mapping function of the
direct density variables to the intermediate variables. The intermediate variables are then transformed to
new design variables by a wavelet transform. If the wavelet transform were applied to the original
density variables, the side constraints would cause undesirable numerical complexity and thus designing
in the wavelet-space would not be very attractive. If the support of a wavelet is long, the numerical
complexity becomes more serious.

We consider several numerical examples including the classical Michell benchmark in order to show

1 For wavelet theories and applications, one may refer to Chui (1992), Daubechies (1992), Vetterli and Kovacevic (1995), Strang

and Nguyen (1996) and Mallat (1998).
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the validity of the present idea of multi-resolution topology optimization. The material model employed
is an arti®cial material model (see, e.g., Hassani and Hinton, 1998b). To solve topology optimization
problems, non-linear mathematical programming methods are utilized. Speci®cally, the methods of
feasible and modi®ed feasible directions are employed (see, Vanderplaats, 1984a). With the numerical
examples, the e�ects of optimizers, mesh size, and the type of wavelets are also examined.

2. Topology optimization

This section lists basic equations needed in topology optimization. A compliance minimization is
considered here as a typical structural optimization problem:

Minimization of L�rrr�:
L�rrr� � UT�rrr�F � UT�rrr�K�rrr�U�rrr� �1�

Subjected to

H�rrr� �
XNe�Me

e�1

�
Oe

re dOÿM0R0 �2�

The optimization problem set up by Eqs. (1) and (2) is based on a ®nite element model. No constraint
such as the perimeter constraint (Harber et al., 1996) is considered here.

The external force is represented by a nodal force array F and the displacement ®eld is expressed by a
nodal displacement array U: The speci®ed mass is denoted by M0 and Oe represents the region occupied
by a ®nite element. Optimization problems only in a two-dimensional rectangular region are considered
in this work without the loss of generality. The numbers of elements in the horizontal and vertical
directions are denoted by Ne and Me, respectively. The array rrr is used to denote:

rrr � fregT �e � 1, 2, . . . ,Ne �Me� �3�
The sti�ness matrix K�rrr� in Eq. (1) can be expressed as:

K�rrr� �
XNe�Me

e�1
Ke�re� �

XNe�Me

e�1

�
Oe

BT
e D�re�Be dO �4�

where Be is the strain interpolation matrix. The stress±strain relation for an isotropic material in a plane
stress state, represented by De�re�, is:

D�re� �
E�re�
1ÿ n2

2664
1 n 0
n 1 0

0 0
1ÿ n
2

3775 �5�

Poisson's ratio n is assumed to be independent of re and only Young's modulus E is penalized as (see,
e.g. Hassani and Hinton, 1998b):

E�re� � E0rne �n � 2� �6�
In Eq. (6), Young's modulus of the given material is denoted by E0. In topology optimization, re is used
as the design variable and subjected to the following side constraint:
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eRreR1 �0 < e� 1� �7�
The sensitivity of the object function L�rrr� and the constraint H�rrr� can be easily found as:

@L

@re
� ÿUT

e

@Ke

@re
Ue � ÿ n

re
UT

e KeUe � ÿ2nre
� �element strain energy� �8�

and

@H

@re
�
�
Oe

dO �9�

3. Wavelet trasform

It is crucial to use wavelet-based design variables in achieving multi-resolution multi-scale design
optimization. This is because multi-resolution approximation can be easily realized in the framework of
wavelets. In addition, most wavelets represent functional di�erences very e�ciently. As a result, the
boundary of a topologically optimized structure can be captured very e�ectively when design
optimization is carried out in the wavelet-based variable space (Kim and Choi, 1998).

In this section, we present the multi-resolution approximation of L 2(R ) with a sequence of subspaces
fV j gj2Z (R: set of real numbers, Z: set of integers). Referring to Mallat (1998), the following six
statements formulate the multi-resolution of L 2(R ):

8j, k 2 Z, f�t� 2 V j , f�tÿ 2 jk� 2 V j �10a�

8j 2 Z, V j�1 � V j �10b�

8j 2 Z, f�t� 2 V j , f

�
t

2

�
2 V j�1 �10c�

lim
j4�1

V j �
\1

j�ÿ1
V j � f0g �10d�

lim
j4ÿ1

V j � closure

 [1
j�ÿ1

V j

!
� L2�R� �10e�

A Riesz basis of V 0 exists: �10f�
An orthogonal basis of V j for all j 2 Z can be always constructed and is denoted by a family
ff j

n �x�, n 2 Z g of the single function f: This function f, called a scaling function, is dilated and
translated to generate f j

n �x�:

f j
n �x� �

1�����
2 j
p f

�
xÿ 2 jn

2 j

�
�11�
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Though a non-orthogonal Riesz basis can be used, we will work mainly with orthogonal bases in order
to clarify the present development.

The scaling function generating an orthogonal basis is orthogonal with respect to its integer
translation. This can be stated as:

hf�x�, f�xÿ n�i �
�1
ÿ1

f�x�f��xÿ n� dt � dn �12�

In Eq. (12), the superscript � denotes a complex conjugate. The discrete Dirac delta dn is de®ned as:

dn �
�
1 if n � 0
0 else

�13�

The notation h i, representing an inner product, will be used in the subsequent development. The
causality condition (10b) allows a two-scale relationship such that

1���
2
p f

�
x

2

�
�

X1
n�ÿ1

hnf�xÿ n� �14�

where hn can be written as:

hn � h 1���
2
p f

�
x

2

�
, f�xÿ n�i �15�

The coe�cient hn is usually viewed as a low pass ®lter in signal processing.
It is useful to introduce the orthogonal projection of f over V j such that

PVj f �
X1

n�ÿ1
a j
nf

j
n �x� �16�

where a j
n denotes the coe�cient at the scale 2 j:

a j
n � hf, f j

n i �17�
When the resolution 2ÿj goes to zero, all the detail of f is lost due to property (10d). This may be
expressed as:

lim
j4�1

kPVj fk � 0 �18�

where the L 2-norm kfk of a function f is de®ned as:

kfk �
��1
ÿ1
jfj2 dx

�1
2 �19�

On the other hand, when the resolution 2ÿj goes to �1, the original function f can be completely
recovered:

lim
j4ÿ1

kfÿ PVj fk � 0 �20�

Since V j is included in V jÿ1, it is possible to construct the orthogonal complement W j as:
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V jÿ1 � V j �W j �21�
where � represents the direct sum. Subsequently, the orthogonal projection of f on V jÿ1 can be
decomposed as the sum of the orthogonal projection on V j and W j:

PVjÿ1 f � PVj f� PWj f �22�
Note that it is possible to construct an orthogonal basis fc j

n g�n, j2Z � of W j by scaling and translating a
single function called a wavelet c:

c j
n �x� �

1�����
2 j
p c

�
xÿ 2 jn

2 j

�
�23�

Furthermore, the wavelet c�x� can be constructed from the scaling function f�x� as:

c�x� �
���
2
p X1

n�ÿ1
gnf�2xÿ n� �24�

The coe�cient gn, which is often referred to as the conjugate mirror ®lter of hn, can be obtained from
hn:

gn � � ÿ 1�1ÿnh1ÿn �25�
The wavelet also has orthogonality with respect to integer translation:

hc�x�, c�xÿ n�i � dn �26�
Utilizing Eqs. (10e) and (20), the L 2 space may be decomposed as

L2�R� � �1j�ÿ1W j �27�

Likewise, the decomposition in the following form is possible as long as L < J:

V L � �J
k�L�1W

k � V J �28�
Property (28) plays an important role in dealing with a discrete sequence of data.

As in Eq. (16), the orthogonal projection of f on W j can be written as

PWj f �
X1

n�ÿ1
d j
nc

j
n �x� �29�

where

d j
n � hf, c j

n i �30�
It is important to realize that the coe�cient d j

n can be also viewed as the discrete value evaluated at
�s � 2 j, u � 2 jn� in the following continuous wavelet transform WTf�u, s�:

WTf�u, s� �
�1
ÿ1

f�x� 1��
s
p c�

�
xÿ u

s

�
dx �31�

In order to reconstruct f from WTf�u, s�, the wavelet c must satisfy at least the following condition (the
exact reconstruction condition is called the admissibility condition; see Mallat (1998)):
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�1
ÿ1

c�x� dx � 0 �32�

Daubechies (1988) showed that it is possible to construct orthogonal wavelet c�x� with a ®nite support
having p vanishing moments. If a wavelet c�x� has p vanishing moments, the wavelet satis®es the
following condition:�1

ÿ1
xkc�x� dx � 0 for 0Rk < p �33�

Because wavelets have properties (32) and (33), the wavelet transform WTf captures sudden variations
of a function f very e�ectively. When a function f varies rapidly or has some singularity within the
support of a wavelet, WTf gives large values. The discrete version d j

n of WTf has the same property.
Mallat (1989) has developed Mallat's algorithm for fast computation of d j�1

n and a j�1
n from a j

n :
Daubechies (1988) has constructed a family of the Daubechies orthogonal real wavelets having the

minimum support size 2pÿ 1 while the wavelets have p vanishing moments. When p � 1, the
Daubechies wavelet reduces to the Haar wavelet (Haar, 1910) such that:

c�x� �

8>>>>><>>>>>:
ÿ1 if 0Rx <

1

2

1 if
1

2
Rx < 1

0 otherwise

�34�

the corresponding Haar scaling function f�x� is:

f�x� �
�
1 if 0Rx < 1
0 otherwise

�35�

Meyer (1992) and Mallat (1989) showed that the scaling function and the wavelet can be constructed
once the corresponding ®lter coe�cient hn in Eq. (14) is known. The ®lter coe�cients hn and gn
corresponding to the Haar scaling and wavelet are simply

hn �

8><>:
1���
2
p for n � 0, 1

0 otherwise

�36�

gn �

8>>><>>>:
ÿ 1���

2
p for n � 0

1���
2
p for n � 1

�37�

The Daubechies wavelet with p � 2 (denoted by D2) can be characterized by its ®lter coe�cients:

h0 � 0:482962913145, h1 � 0:836516303738

h2 � 0:224143868042, h3 � ÿ0:129409522551 �38�
When a set of one-dimensional discrete data a0 is given,
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a0 �
�
a0n
	T �0RnRNe ÿ 1� �39�

one may assume that a0n is the coe�cient of a certain function in Eq. (17) with j � 0: Using
decomposition rule (28), this set of data can be represented by its orthogonal wavelet decomposition up
to the scale 2J:

ÃaJ �
�
aJ, dJ, dJÿ1, . . . ,d1

	T�
n
âJn

oT

0RnRNe ÿ 1 �40�

d j � �d j
n

	T
0RnR2ÿjNe ÿ 1, 1RjRJ �41a�

aJ � �a j
n

	T
0RnR2ÿjNe ÿ 1 �41b�

In Eq. (41), d j are the wavelet coe�cients at scale 2 j and aJ is the remaining approximation at a coarse
scale of 2J: The computation of the coe�cients d j

n and aJn can be carried out e�ciently by the fast ®lter
bank algorithm (Mallat, 1989) depicted in Fig. 1.

Fig. 1 shows that a fast forward wavelet transformation can be computed with cascade ®ltering of �hn
and �gn followed by a subsampling factor of 2 where �hn and �gn are given by

�hn � hÿn, �gn � gÿn �42�
The explicit expression of the fast ®lter bank algorithm depicted in Fig. 1 is as follows: At the
decomposition

a j�1
m �

X1
n�ÿ1

hnÿ2ma j
n �43a�

d j�1
m �

X1
n�ÿ1

gnÿ2ma j
n �43b�

At the reconstruction

Fig. 1. Fast ®lter bank algorithm � �hn � hÿn, �gn � gÿn� for (a) a forward wavelet transform and (b) an inverse wavelet transform.
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a j
m �

X1
n�ÿ1

hmÿ2na j�1
n �

X1
n�ÿ1

gmÿ2nd j�1
n �44�

A ®nite discrete signal is usually made periodic so that the calculation of d j�j � 1, 2, . . . ,J � and aJ are
usually performed by a circular convolution (see Mallat, 1998). However, only the Haar wavelet has no
border (or boundary) e�ect under periodization.

Although the wavelet decomposition and reconstruction are conducted using the ®lter bank algorithm,
it may be convenient to view the decomposition and reconstruction in Eqs. (43) and (44) as linear
transformations T and IT such that

ÃaJ � T � a0 �45�

a0 � IT � ÃaJ � Tÿ1 � ÃaJ �46�
where T and IT are Ne �Ne nonsingular square matrices.

For orthogonal wavelet transforms, one can show that:

Tÿ1 � TT �47�
In a two-dimensional case, we consider separable multi-resolutions based on the tensor product space
as:

V j
2 � V j 
 V j �48�

and the space V jÿ1
2 can be decomposed as:

V jÿ1
2 � V j

2 
W j
2 �49�

where

W j
2 �

ÿ
V j 
W j

�
�
ÿ
W j 
 V j

�
�
ÿ
W j 
W j

�
�50�

The scaling function and the wavelet in L2�R2� can be constructed from the tensor product of a one-
dimensional scaling function f and a wavelet c as:

Scaling function:

f�x, y� � f�x�f�y� �51�

Wavelets:

1c�x, y� � f�x�c�y� �52a�

2c�x, y� � c�x�f�y� �52b�

3c�x, y� � c�x�c�y� �52c�

The families ff j
n; mg�n; m2Z � construct an orthonormal basis of V j

2 and the families f1c j

n; m�x, y�,
2c

j

n; m�x, y�, 3c
j

n; m�x, y�g�j; n, m� 2 Z form an orthonormal basis of W j
2 : The de®nition of f j

n, m and
kc

j

n, m is:
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f j
n, m�x, y� �

1

2 j
f

�
xÿ 2 jn

2 j
,
yÿ 2 jm

2 j

�
�53a�

kc
j

n, m�x, y� �
1

2 j
kc

�
xÿ 2 jn

2 j
,
yÿ 2 jm

2 j

�
�k � 1, 2, 3� �53b�

As in the one-dimensional case, the projection onto V j
2 and W j

2 can be written as:

PV j
2
f �

X1
n�ÿ1

X1
m�ÿ1

a j
n, mf

j
n, m�x, y� �54�

PW j
2
f �

X1
n�ÿ1

X1
m�ÿ1

X3
k�1

kd j
n, m

kc
j

n, m�x, y� �55�

where the coe�cients a j
n, m and kd j

n, m are found as:

a j
n, m � hf, f j

n, mi �
�1
ÿ1

�1
ÿ1

f�x, y�f j
n, m�x, y� dx dy �56�

kd j
n, m � hf, kc

j

n, mi �
�1
ÿ1

�1
ÿ1

f�x, y�kc j

n, m�x, y� dx dy �57�

The fast algorithm for the decomposition of a j
n, m into a j�1

n, m and kd j�1
n, m , and the reconstruction of a j

n, m

from a j�1
n, m and kd j�1

n, m is basically the same as the one-dimensional ®lter bank. When a set of two-
dimensional discrete data a0n, m is given as

a0 �
h
a0n, m

i
�0RnRNe ÿ 1, 0RmRMe ÿ 1� �58�

its orthogonal wavelet representation up to a coarse scale J may be split into 3J� 1 blocks as shown in
Fig. 2.

It is convenient to introduce the following notation in the case of the two-dimensional data:

aJ �
h
aJn, m

iÿ
0RnR2ÿJNe ÿ 1, 0RmR2ÿJMe ÿ 1

�
�59�

Fig. 2. Separable wavelet transform of a two-dimensional image up to level J � 3:
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kd
j �

h
kd j

n, m

iÿ
0RnR2ÿjNe ÿ 1, 0RmR2ÿjMe ÿ 1, k � 1, 2, 3

�
�60�

We also de®ne ÃaJ as:

ÃaJ �
�

aJ,

n
1d

J
, 2d

J
, 3d

J
o
,

n
1d

Jÿ1
, 2d

Jÿ1
, 3d

Jÿ1
o
, . . . ,

n
1d

1
, 2d

1
, 3d

1
o�
�
h
âJn, m

iT

�0RnRNe ÿ 1, 0RmRMe ÿ 1�
�61�

The location of aJ and kd
j
in the two-dimensional array ÃaJ for J � 3 is depicted in Fig. 2.

It is worth mentioning that the coe�cients of large amplitude in 1d
j
, 2d

j
and 3d

j
correspond

respectively to horizontal edges, vertical edges, and corners of a two-dimensional image. Since 1d
j
, 2d

j

and 3d
j
correspond to edges and corners, we anticipate that optimization in the wavelet space will be

very e�cient; the boundary of an optimized structure can be e�ectively captured due to wavelet
properties expressed by Eqs. (32) and (33).

As in the one-dimensional case, one can interpret the wavelet transform of aJ into ÃaJ as a linear
transformation:

ÃaJ � ÿTx 
 Ty

�
a0 �62�

and

a0 � ÿTx 
 Ty

�ÿ1 ÃaJ �63a�

a0 � ÿTx 
 Ty

�T ÃaJ for orthogonal transforms: �63b�

4. Topology optimization in a wavelet space

4.1. Wavelet transform of direct density variables

As pointed out earlier, the design space will be transformed from the discrete density space to a new
space by the wavelet transform for multi-resolution multi-scale topology optimization. However, the side
constraint (7) becomes complicated in the wavelet-transformed variable space (which will be called the
wavelet space) so that the wavelet-space design optimization is not quite practical. To illustrate the
complication in the wavelet space, consider a one-dimensional case with only two design variables
�r1, r2). Among various wavelet transforms, the simplest Haar wavelet transform is selected without the
loss of generality.

Using Eqs. (36), (37) and (43), one can ®nd the relation between the direct density variables �r1, r2�
and the wavelet transformed variables �r̂1, r̂2� as:

r̂1 �
1���
2
p �r1 ÿ r2�

r̂2 �
1���
2
p �r1 � r2� �64�

Observe that in the space of r̂1 and r̂2, the side constraint (7) (with e � 0� becomes,

Y.Y. Kim, G.H. Yoon / International Journal of Solids and Structures 37 (2000) 5529±5559 5539



r̂2Rr̂1 �65a�

r̂2rr̂1 ÿ
���
2
p

�65b�

r̂2rÿ r̂1 �65c�

r̂2Rÿ r̂1 �
���
2
p

�65d�
The constraints in the rrr and Ãrrr spaces are depicted in Fig. 3. As clearly seen in Fig. 3, the side
constraints in the wavelet-transformed space are not so simple as Eq. (7), and substantial numerical
complexity arises. Since wavelet transforms using other wavelets than the Haar wavelet involve more
than two density variables, the constraint equations in terms of wavelet transformed variables involve
more than two variables. In two-dimensional situations, even the determination of the constraints in the
transformed variables is cumbersome. Therefore, it appears that optimization in this wavelet-

Fig. 3. Side constraint in terms of (a) �r1, r2� and (b) �r̂1, r̂2).
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transformed space is not very practical or useful although wavelets may catch image or optimized
structure boundaries e�ectively.

4.2. The introduction of intermediate variables

Since we will consider two-dimensional problems, it is convenient to treat rrr in Eq. (3) now as a two-
dimensional array such that

rrr � �rnm ��0RnRNe ÿ 1, 0RmRMe ÿ 1� �66�

where

rnm � re with e � e�n, m� �67�

To overcome the di�culty discussed in Section 4.1, we propose to introduce intermediate variables a0nm
such that:

rnm � g
ÿ
a0nm

��0RnRNe ÿ 1, 0RmRMe ÿ 1� �68�

where the transformation g is selected to satisfy the following criteria:

1. One-to-one correspondence between rnm and a0nm must be ensured.
2. Under the transformation g, the side constraint expressed by Eq. (7) should be relaxed or removed in

the space of a0nm:

One can show that the following transformations satisfy the criteria above:

rnm �
1

p
a tan

ÿ
Sa0nm

�� 1

2
, where S 2 R� �69�

rnm �
1ÿ exp

ÿÿ Sa0nm
�

2� 2exp
ÿÿ Sa0nm

� � 1

2
, where S 2 R� �70�

Fig. 4. The Sigmoid function with various of S.
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rnm �
1

1� exp
ÿÿ Sa0nm

� , where S 2 R� �71�

It is remarkable that the side constraint (7) is actually eliminated by any of the transformations in Eqs.
(69)±(71):

ÿ1 < a0nm <1 �72�
Among the three transformation functions given in Eqs. (69)±(71), the transformation in Eq. (71) is
selected for the present analysis though other transforms may be selected.

The function appearing in Eq. (71) is usually referred to as the Sigmoid function and plotted in Fig. 4.
The Sigmoid function is one of S-shaped `squashing functions'. This function maps a real value that
may be arbitrarily large in magnitude (positive or negative) to a real value that lies within some narrow
range. The value of the parameter S changes the shape of the Sigmoid function and may a�ect the
convergence rate in the optimization process. The e�ects of the values of S on the solution convergence
will be examined along with numerical examples.

Now the wavelet transform will be applied to the two dimensional discrete data a0nm which are
mapped from rnm: Once the resolution level J in Eq. (62) is selected, ÃaJ can be easily obtained by
Mallat's algorithm (Mallat, 1989).

4.3. Sensitivity analysis

To ®nd an optimal solution in the ÃaJ space, the sensitivities of the mean compliance L and constraints
with respect to ÃaJ are required. It is straightforward to obtain:

@L

@ âJnm
�
XNeÿ1

i�0

XMeÿ1

j�0

@L

@a0ij

@a0ij

@ âJnm
�73�

Eq. (73) can be written in compact form as:

@L

@ ÃaJ
� ÿTx 
 Ty

� @L
@a0

�74�

where

@L

@a0
�
�
@L

@a0nm

�
,
@L

@ ÃaJ
�
"
@L

@ âJnm

#
0RnRNe ÿ 1, 0RmRMe ÿ 1 �75�

The sensitivity of L with respect to a0
ij is simple to compute:

@L

@a0nm
� @L

@rnm

@rnm
@a0nm

�76�

where @rnm=@a
0
nm is found from Eq. (71).

Similarly, the sensitivity of the constraint (2) with respect to ÃaJ is

@H

@ ÃaJ
� ÿTx 
 Ty

� @H
@a0

�77�

where
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@H

@a0nm
� @H

@rnm

@rnm
@a0nm

�78�

Note again that there is no side constraint imposed on the design variable ÃaJ:

5. Multi-resolution multi-scale topology optimization

The formulation for topology optimization in the wavelet space was given in the previous section. In
this section, we will discuss the implementation of multi-resolution topology optimization in the wavelet
space. The Michell benchmark, shown in Fig. 5, will be used as the ®rst test problem. The objective of
this problem is to ®nd a structure with minimal compliance subjected to the mass constraint of 37.5%.
The geometry and material data are given in the ®gure. Two ®nite element models with Mesh 1 and
Mesh 2, shown in Fig. 6, will be used for design optimization. The total numbers of elements for Mesh
1 and Mesh 2 are 2N � 2M � 512 (N = 5, M = 4) and 2N � 2M � 2048 (N = 6, M = 5), respectively.

Fig. 5. The Michell benchmark problem (L=16, H=10, Poisson's ratio=0.3).

Fig. 6. Finite element discretization for the Michell benchmark problem for (a) Mesh 1 (512 elements) and (b) Mesh 2 (2048 el-

ements).
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For all the numerical work, we use 8 node plane stress elements. Though checkerboards can be
suppressed by the wavelets (Kim and Kim, 1999; Poulsen, 1999), we use higher order elements to focus
on more fundamental numerical instabilities.

The motivation for multi-resolution multi-scale topology optimization is that design should progress
from a low to a high resolution level. However, existing design optimization schemes have no notion of
resolution and thus yield optimized results directly at one resolution level. To understand this, consider
an artist's drawing process. The initial drawing sketches the boundary of an object (say, a man's face)
with a thick brush (a long scale) and more details are added wth thinner brushes (shorter scales) on the
sketch as the drawing progresses. This drawing process is basically the same as the multi-resolution

Fig. 7. Description of the multi-level design process.

Table 1

De®nition of Resolution Level (the case with Mesh 2 having 2M � 2N � 26 � 25 elements is considered)

De®nition Active design variables Number of design variables Remark

Resolution Level 1 a6, 2d
6
, fkd

5g, . . . ,fkd 1g for k � 1, 2, 3 26 � 25 Full level

Resolution Level j aJ, kd
J
, kd

Jÿ1
, . . . , kd

j
k � 1, 2, 3 26ÿj�1 � 25ÿj�1 Intermediate level

Resolution Level 6 a6, 2d
6

2 Non-trivial lowest starting

level for MTOP

Resolution Level 7 a6 1 Trivial case
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multi-scale topology optimization that we will carry out. We postulate that this progressive drawing
concept applies equally to structural topology optimization.

Referring to Fig. 2, the multi-resolution design process may be viewed as the process depicted in
Fig. 7. The shadowed region in Fig. 7 is proportional to the number of the design variables used at each
level. More design variables including shorter scales are used as higher resolution is pursued. As

Fig. 8. Optimized results obtained by the modi®ed feasible direction method for Mesh 1, (a) in the direct density space and (b) in

the wavelet space at full resolution (no post-processing).
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explained earlier, the present multi-resolution multi-scale analysis may be realized most e�ectively in the
wavelet-transformed space ÃaJ: Note that at low resolution, only the design variables with long scales are
used. However, at high resolution, both long- and short-scaled design variables are used.

In the multi-resolution multi-scale topology optimization scheme, an optimized topology at a scale of
2 j or level j will be used as an initial topology for the optimization at the next resolution, i.e., at a scale
of 2 jÿ1: Before going further, it is convenient to de®ne `Resolution Level j' (or simply `Level j') to refer
to the level of resolution. Table 1 explains how many design variables are included in Resolution Level j

Fig. 9. Optimized results obtained by the feasible direction method for Mesh 1, (a) in the direct density space and (b) in the wavelet

space at full resolution (no post-processing).
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Table 2

The numbers of iterations �Niter� and function �Nf� evaluations with the optimized function values �Lopt� for the results shown in

Figs. 8 and 9

Optimizer Density space Wavelet space

Niter,Nf Lopt Niter,Nf Lopt

FDM 31, 72 4877.56 40, 120 3740.29

MFDM 40, 530 3675.72 40, 289 3746.00

Fig. 10. Optimized results obtained by the feasible direction method for Mesh 2, (a) in the direct density space and (b) in the wave-

let space at full resolution (no post-processing).

Y.Y. Kim, G.H. Yoon / International Journal of Solids and Structures 37 (2000) 5529±5559 5547



in the case of Mesh 2. Note that Resolution Level 1 corresponds to the full resolution where the number
of the wavelet-based design variables is the same as the number of the original density variables.

For easy numerical implementation, the numbers Ne and Me of the original ®nite elements are taken
as the powers of 2 such that Ne � 2N and Me � 2M: Without the loss of generality, we assume that
NrM: The lowest resolution is Resolution Level N� 1 in which only one non-vanishing term actually
represents the average density. Thus the term aN�1 can be easily computed from the prescribed mass
constraint ratio. Note that Level M� 1 to Level N� 1 include the design variables corresponding to
one-dimensional decompositions.

5.1. Full resolution multi-scale topology optimization

Before discussing general multi-resolution multi-scale topology optimization, we consider ®rst the full
resolution multi-scale topology optimization in the wavelet space. This is a special case of the multi-
resolution multi-scale topology optimization started at Resolution Level 1. This optimization will be
designated as `FTOP' in this work. We use the methods of feasible direction (FDM) and modi®ed
feasible direction (MFDM) (Vanderplaats, 1984a) as the numerical optimizers. FDM and MFDM of
ADS, the program developed by Vanderplaats (1984b), are used. Unless stated otherwise, the wavelet
used for the wavelet transform is the simplest Haar wavelet. In what follows, we will compare the
numerical results obtained from the wavelet-based full resolution optimization and those from the direct
density-based optimization.

5.1.1. E�ect of optimizers
First, we examine the e�ect of optimizers on the solution convergence. The results obtained by the

modi®ed feasible direction method and the feasible direction method are shown in Figs. 8 and 9,
respectively. The optimized results in the direct density space and the wavelet space are given in (a) and
(b). The results in Figs. 8 and 9 are based on Mesh 1. The iteration numbers and the objection function
values are listed in Table 2. We used the absolute �Ca� and the relative �Cr� convergence criteria as Ca �
0:01 and Cr � 0:01: From the results given by Figs. 8 and 9 and Table 2, the following conclusions may
be drawn.

1. FTOP in the wavelet space is not so sensitive to optimizers. The same con®gurations are obtained
regardless of the optimizers in consideration. Intermediate density values are suppressed in the
wavelet space optimization unlike in the density space optimization.

2. The number of function evaluations is substantially reduced when design optimization is carried out
in the wavelet space.

3. For the wavelet-space optimization, the object function varies substantially during the ®rst few
iterations and then decreases monotonically to the minimum value.

Why does the optimization in the wavelet space outperform the optimization in the density space? The
main reason is that wavelets have the vanishing moments as stated by Eq. (33). In the case of the Haar

Table 3

The numbers of iterations �Niter� and function evaluations �Nf� with the optimized function values �Lopt� for varying mesh size

Optimizer Ne �Me � 512 Ne �Me � 1024 Ne �Me � 2048

FDM Niter � 40, Nf � 120, Lopt � 3740:29 Niter � 40, Nf � 120, Lopt � 3457:72 Niter � 40, Nf � 123, Lopt � 3485:15
MFDM Niter � 40, Nf � 289, Lopt � 2746:00 Niter � 40, Nf � 336, Lopt � 3479:69 Niter � 40, Nf � 362, Lopt � 3411:92
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wavelet, it has one vanishing moment �p � 1). This implies that the Haar wavelet can detect function
discontinuities e�ectively. Therefore, the boundary of the optimized structure can be identi®ed well in
the wavelet space, which obviously plays a critical role in topology optimization. Furthermore, wavelets
are constructed by dilating a mother wavelet so that functions or quantities having multi-scales can be
well represented in the wavelet space. Due to the vanishing moment and the multi-scale properties,
relatively small changes in the wavelet coe�cients corresponding to long scales result in big structural
topology changes (see the iteration histories shown in Figs. 8 and 9). Therefore, an optimizer can ®nd

Fig. 11. FTOP results with the Sigmoid parameter equal to (a) S = 0.01, (b) S = 0.3 and (c) S = 100.
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structure boundaries more e�ectively at the initial iteration stage. As shall be shown later, this idea can
be realized better in the frame of multi-resolution multi-scale topology optimization.

5.1.2. E�ect of mesh size
To see the e�ect of the mesh size on the solution convergence, we consider the same Mitchell

optimization problem with Mesh 2. The results are shown in Fig. 10. As in the case of Mesh 1, the
present wavelet-based full resolution multi-scale optimization gives a satisfactory result. However, both
the feasible and the modi®ed feasible direction methods for the direct density space optimization give
unsatisfactory results; only the result by the feasible direction method is given in Fig. 10(a). The number
of function evaluations for the converged result of Fig. 10(b) was 123. Note that unless the objective
function includes an additional penalty term such as l

P
re � �1ÿ re� in the case of the direct density

space optimization, no convergence was achieved with the two mathematical programming methods in
consideration.

In Table 3, we list the number of the FTOP iterations and function evaluations for the converged
result with varying meshing size. The results are interesting: the total function evaluation and iteration
numbers are not very sensitive to the mesh size. As explained earlier, the wavelet coe�cients associated
with long scales are adjusted ®rst as these coe�cients vary the structural con®guration signi®cantly. This
property may be very useful in developing a more e�cient optimization scheme.

Tables 2 and 3 show that smaller numbers of iterations are required by FDM when the present
wavelet-based design optimization is carried out. Therefore, we will use FDM for all the numerical
problems below.

5.1.3. E�ect of the Sigmoid parameter S
The e�ect of the Sigmoid parameter S in Eq. (71) on the solution convergence also needs to be

examined. Although the side constraint (7) is removed by the transform (71), the search limits of the

Table 4

The e�ect of the Sigmoid parameter S on the convergence

S Niter, Nf, Lopt

0.01 Niter � 40, Nf � 127, Lopt � 3511:65
0.3 Niter � 40, Nf � 123, Lopt � 3485:15
100 Niter � 40, Nf � 123, Lopt � 3494:34

Fig. 12. FTOP results using the Daubechies wavelet order 2 (no post-processing).
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Fig. 13. Multi-resolution topology optimization started at Resolution Level 6. The results for Mesh 2 are obtained at (a) Level 6,

(b) Level 5, (c) Level 4, (d) Level 3, (e) Level 2 and (f) Level 1 without post-processing.
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design variables must be provided when FDM or MFDM is used. We have obtained satisfactory results
for any of the following Sigmoid parameters and search limits.

For S � 100, ÿ 1� aJnm,
kd j

nm � 1

For S � 0:3, ÿ 100 < aJnm,
kd j

nm < 100

For S � 0:01, ÿ 1000 < aJnm,
kd j

nm < 1000

Fig. 11 shows the optimized con®gurations for di�erent values of S and Table 4 lists the corresponding
iteration and function evaluation numbers. The feasible direction method is used for the results given in
Fig. 11. The results shown in Fig. 11 and listed in Table 4 indicate that the solution convergence is
virtually insensitive to the values of S, but of S � 0:3 is used throughout the present numerical work.
However, the value of S should be so selected that the sensitivity of rnm with respect to aJnm,

kd j
nm is not

too large or small.

5.1.4. E�ect of wavelets
So far, we have considered only the Haar wavelet for the wavelet transform. However, there are other

wavelets having more vanishing moments. As explained earlier, the vanishing moment property of
wavelets plays an important role in convergence improvement. However, wavelets with more vanishing
moments have longer supports. Since the localization property of wavelets is controlled by the support
size, a trade between the order of vanishing moments and the support size should be made. The Haar
wavelet has the best localization property as it has the shortest support size.

Among many wavelets, we consider the orthogonal Daubechies wavelet with p vanishing moments,
which is denoted by Dp. The size of the corresponding ®lter h is 2p. To see the e�ect of the order p of
vanishing moments on solutions, we take D1 �p � 1� and D2 �p � 2). Note that D1 is nothing but the
Haar wavelet and the results by the Haar wavelet were already given. Fig. 12 shows the optimized
results obtained with D2 for Mesh 2. Though the results by D1 (shown in Fig. 10(b)) and D2 (shown in
Fig. 12) are both satisfactory, the number of intermediate density variables by D2 is smaller than that
by D1. This is attributed to the fact that D2 has more vanishing moments.

Besides the orthogonal Daubechies wavelets, there are biorthogonal wavelets designed by Cohen et al.
(1992). However, no attempt is made to try all available wavelets in the present work. The message is,
however, is that depending on the goal of optimization, there may be optimal wavelets. More research
towards this direction needs to be done.

Table 5

The results by MTOP started at Resolution Level 6

Resolution Level Niter, Nf Lopt

6 5, 11 9834.322

5 4, 11 9685.278

4 24, 74 6549.451

3 24, 84 4969.323

2 39, 120 3666.04

1 10, 35 3313.36
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Fig. 14. Multi-resolution topology optimization started at Resolution Level 3. The results for Mesh 2 are obtained at (a) Level 3,

(b) Level 2 and (c) Level 1 without post-processing. The result from (c) is post-processed to yield the result shown in (d).
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5.2. Multi-resolution multi-scale topology optimization

The key idea of the multi-resolution multi-scale topology optimization (MTOP) is to start the
optimization at low resolution and then to proceed to the next resolution. In this multi-resolution
optimization framework, optimization may begin at any desired resolution level, say, Resolution Level j.
The optimal solution obtained at Resolution Level j is then inputted as an initial guess for an optimal
solution at the next resolution, i.e., Resolution Level jÿ 1: This process will repeat until the ®nal
resolution reaches the highest resolution, Resolution Level 1. In this setup, the number of the wavelet-
based design variables increases as the higher resolution is reached. However, the ®nite element mesh for
the highest resolution is used for all resolution levels. We will apply MTOP based on the Haar wavelet
to problems in consideration.

First we consider the MTOP started at Resolution Level 6. This resolution is the lowest nontrivial
resolution level since Resolution Level 7 gives a trivial solution with Ãa7 corresponding to the mean
density. Fig. 13 shows the results obtained at di�erent resolution levels. Note that the result at Level j
was used as the initial guess for optimization at Level jÿ 1: The ®nite element model employed for
MTOP is based on Mesh 2. Table 5 gives the number of iterations and function evaluations required for
the converged results as well as the converged object function values. From the results obtained by
MTOP, we have found:

Table 6

The result by MTOP started at Resolution 1 Level 3

Resolution Level Niter, Nf Lopt Convergence criteria

Ca
a Cr

b

3 6, 18 5446.39 0.1 0.1

2 12, 37 4235.74 0.01 0.01

1 9, 49 3705.44 0.01 0.01

a Absolute convergence criterion.
b Relative convergence criterion.

Fig. 15. A compliance minimization problem under one point load at the corner (L=16, H=10).
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Fig. 16. The result by FTOP for the problem de®ned in Fig. 16 �Niter � 40, Nf � 124, Lopt � 3982:87).

Fig. 17. MTOP started at Resolution Level 3. The results are obtained at (a) Level 3 �Niter � 6, Nf � 124, Lopt � 7836:92� (b) Level
2 �Niter � 20, Nf � 77, Lopt � 4755:94), and (c) Level 1 �Niter � 38, Nf � 137, Lopt � 3943:65).
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Fig. 18. MTOP started at Resolution Level 3. The results are obtained at (a) Level 6 �Niter � 6, Nf � 15, Lopt � 13946:88), (b) Level
5 �Niter � 3, Nf � 11, L � 11501:65), (c) Level 4 �Niter � 7, Nf � 21, Lopt � 7709:19), (d) Level 3 �Niter � 3, Nf � 11, Lopt � 6309:56),
(e) Level 2 �Niter�13, Nf � 39, Lopt�4792:8), (f) Level 1 �Niter, Nf � 111, Lopt�3874:0).
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1. The ®nal optimal result of Fig. 13(f) is topologically simpler than the results obtained by FTOP or
the direct-density based optimization. Compare Figs. 10(b) and 13(f). Furthermore, the objective
function appears to reach the minimum value. Compare Tables 3 and 5.

2. Furthermore, intermediate density values virtually disappear in the ®nal con®guration shown in
Fig. 13(f).

3. No remeshing is required as the degree of resolution improves. Only the ®nal ®nest discretization is
needed in MTOP.

Among others, the fact that a topologically simpler structure can be obtained is striking. To ®nd such a
simple structure, an additional constraint such as the perimeter constraint (see Sigmund and Petersson,
1998) has to be imposed explicitly. However, the present MTOP even without any explicit constraint
yields a topologically simple structure while meeting the design objective of minimum compliance.
Furthermore, MTOP also tends to push the objective function to take the global minimum value.

Though intermediate density values do not appear in the ®nal con®guration, the total number of
iterations is quite large (see Table 5). The same convergence criteria �Ca � Cr � 0:001� are used for all
levels. To improve the solution convergence rate, we may start with a higher resolution level. This is
motivated by the observation that the optimized results at too coarse resolution levels such as
Resolution 6 and Resolution 7 may be far from the ®nal results. Fig. 14 shows the results by MTOP
started at Resolution Level 3. The post-processed con®guration shown in Fig. 14(d) is virtually identical
to the one shown in Fig. 13(f). The iteration numbers and the object function values are tabulated in
Table 6. The total numbers of iterations and function evaluations have been reduced substantially
though somewhat relaxed convergence criteria are used.

As the next problem, the optimization depicted in Fig. 15 is considered. Since either the Haar wavelet-
based FTOP or MTOP always gives improved results, we do not repeat the direct density-based
optimization. Fig. 16 shows the optimized result by FTOP where Figs. 17 and 18 show the results by
MTOP started at Levels 3 and 6, respectively. It is clear that the optimized con®gurations in Fig. 18 by
MTOP are less complex than the con®guration by FTOP. The optimized con®gurations by FTOP and
MTOP started at Level 3 are the same as the existing result (see Rozvany et al., 1995; Diaz and Bensùe,
1992). However, FTOP started at Level 6 gives a di�erent con®guration from those by FTOP or MTOP
started at Level 3. Furthermore, the corresponding value of the object function is smaller than the
others. Since optimization is carried out progressively throughout all resolution levels, the present result
tends to approach the global minimum. Though more theoretical investigations on this aspect need to
be carried out, this property of MTOP is very useful in practical optimization problems.

Fig. 19. A compliance minimization problem under 3 point loads (L=200, H=100).

Y.Y. Kim, G.H. Yoon / International Journal of Solids and Structures 37 (2000) 5529±5559 5557



Finally, the compliance minimization problem de®ned in Fig. 19 is considered. The results by FTOP
and MTOP started at Levels 3 and 6 are compared in Fig. 20. Only the ®nal results by MTOP are
shown in Fig. 20. All the results have the same topology complexity, but a slightly better result (in terms
of intermediate density values) is obtained by MTOP started at Level 6.

6. Conclusions

A new concept of multi-resolution multi-scale topology optimization (MTOP) is presented in this

Fig. 20. The results (a) by FTOP, (b) by MTOP started at Level 3 and (c) by MTOP started at Level 6 without post-processing.
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work. The wavelets are used as the framework for multi-resolution multi-scale topology optimization
(MTOP) and the underlying wavelet theories are brie¯y given. The removal of the side constraints
imposed on the original density has resulted in the successful numerical implementation of MTOP.
Among others, it is found that MTOP yields globally optimal structures having as simple topologies as
possible. The present MTOP formulation did not use any explicit constraint such as a perimeter
constraint in obtaining such structures. Considering the striking results, it is believed that multi-
resolution multi-scale topology optimization will open a new paradigm for topology optimization.
Obviously, this new topology optimization approach should be accompanied by more theoretical
foundations.
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